

A Case Study of the Research-to-Operations (R20) Process at HMT-WPC

Thomas E. Workoff^{1,2}, Faye E. Barthold^{1,3}, Michael J. Bodner¹, Benjamin J. Moore⁴, David R. Novak¹, Brad Ferrier^{3,5}, Ellen Sukovich⁴, Thomas Hamill⁶, Gary Bates⁵, and Wallace A. Hogsett¹

¹NOAA/NWS/Weather Prediction Center, College Park, MD

²Systems Research Group, Inc., Colorado Springs, CO

³I.M. Systems Group, Inc., Rockville, MD

⁴CIRES/University of Colorado/NOAA Earth Systems Research Laboratory, Boulder, CO

⁵NCEP/Environmental Modeling Center, Camp Springs, Maryland

⁶Physical Sciences Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

HMT-WPC: What do we do?

Accelerate the transfer of scientific and technological innovations into operations to enhance WPC products and services.

R20: How it works

Three-step transition process

- 1. Development and testing of new datasets, models and techniques
 - » Real-time/retrospective forecasting experiments
- 2. Subjective and objective evaluation
- 3. Operational training and implementation

Experiments:

Test new models, guidance, tools, products in (pseudo) *real* time, with *real* forecasters, in a *real* operational meteorology setting

2013 Winter Weather Experiment

The Issue: Improve Numerical Model Snowfall Guidance

- Numerical model prediction of snowfall is still an "inexact" science that suffers from several issues:
 - The precipitation-type (p-type) conundrum
 - Instantaneous P-type
 - The snow-to-liquid ratio (SLR) conundrum
 - Snowfall = QPF x SLR
 - How do we get the SLR right?
 - The snowfall vs. snow accumulation conundrum
- Collaboration with EMC/NAM
 - Mike Bodner (HMT-WPC) and Brad Ferrier (EMC)

NAM Rime Factor-Modified Snowfall Accumulation

- Roebber snowfall (SLR) technique*
 - Roebber, P. J., S. L. Bruening, D. M. Schultz, and J. V. Cortinas, 2003: Improving snowfall forecasting by diagnosing snow density. Wea. Forecasting, 18, 264-287
- Modifies Roebber SLR by considering the percentage of frozen precipitation and the rime factor
 - Percent Frozen QPF (instantaneous) percent of precipitation reaching the ground that is frozen
 - Rime Factor (instantaneous) indicates amount of growth of ice particles by riming and liquid water accretion

```
1 < RF < ~2 no change to Roebber SLR

~2 < RF < ~5 Roebber SLR reduced by factor of 2

~5 < RF < ~20 Roebber SLR reduced by factor of 4

RF > ~20 Roebber SLR reduced by factor of 6
```

fluffy (unrimed) snow rimed snow graupel sleet (frozen drops)

- Evaluated during the 2013 Winter Weather Experiment
 - Probability of exceedance forecasts (e.g. 2", 4", 8")
 - Decision support

NAM Roebber 24 hour Snowfall Valid 00Z Jan 18, 2013

NAM Filter Rime Factor Valid 21Z Jan 17, 2013

NAM Filter SLR Valid 21Z Jan 17, 2013

NAM Rime-Factor 24 hour Snowfall Valid 00Z Jan 18, 2013

Verification: An Example

"....in areas of north central North Carolina where the high rime factor/low fraction of frozen precip the latter half of the forecast and short duration of high percent frozen suggest lower amounts will fall."

A Penny for Your Thoughts?

How accurate was your fc Did the experimental guidance provide any benefit? 2013 WWE Subjective Model Evaluation **Experimental Forecast Evaluation** Impressions? Feedback? How can we improve it? 3. Using the gridded snowfall analysis snowfall accum 2013 WWE Guidance Impressions enerated using t generated Rime Factor Filter N/A 6. What is your overall impression of the rime factor-based snowfall accumulation algorithm? Do you think this concept is an improvement over the current SLR methods? Do you have any suggestions for refining 12" the technique? Comments Prev Next

WWE Results, and What Now?

- Overall favorable reception
 - Rime factor, Percent frozen precip, SLR modification
 - Helps identify areas where precipitation-type could be a concern
- Main drawbacks:
 - Only applied to the NAM (and its QPF)
 - Resolution differences made comparison to standard NAM Roebber snowfall difficult
- Going forward:
 - Expanding to all forecast cycles (only available at 00Z)
 - Implementation on 32km grid? (currently produced at 12 km)
 - Apply it to SREF or GFS?
 - Combine snowfall forecast with land use parameterization → potentially improve accumulation forecasts(?)

The Issue: Improve Predictability of Extreme Precipitation Events along the West Coast

- QPFs are challenging
 - Amounts, location & timing difficult
 - Especially in mid-range timeframe
- Influence of WPC products
 - Excessive rainfall
 - Medium range QPF
- 2012 Atmospheric River Retrospective Forecasting Experiment (ARRFEX)
 - 8 retrospective AR cases
 - Tested experimental data sets in creating 72 hour QPF and probability of exceedance forecasts

ESRL 2nd Generation Reforecast Dataset

- 2nd generation GEFS (version 9.0.1); 1985-2010
- 10 members plus control run; archive 00Z initializations
- Ranked analog method at each grid point to find dates of closest 50 matches
 - NARR precipitation data (32 km)
 - 24 hr PQPF and mean QPF
- Removes model QPF biases; uses observations of past events to make forecasts

http://www.esrl.noaa.gov/psd/forecasts/reforecast2/

Hamill, T. M, and co-authors, 2013: NOAA's second-generation global medium-range ensemble reforecast data set. *Bull. Amer. Meteor. Soc.*, Early Online Release.

Probability of >3" in 24 hours 5-day Forecast

ARRFEX Results, and What Now?

Forecasters reacted favorably to the reforecast dataset, particularly in its ability to identify areas at risk for heavy precipitation at mid-range lead times

→ Reforecast deemed 'most helpful' in 6 cases (CMCE: 1, HMT: 2)

ARRFEX Results, and What Now?

- Collaboration between WPC-HMT and ESRL on development of reforecast products:
 - Probability of exceedance
 - Percentiles (climatology)
 - Deterministic (mean QPF)
 - Extreme Forecast Index
- Working on getting WPC direct access to the reforecast dataset for continued in-house development (e.g. dataflow)

Credit: Tom Hamill and Gary Bates, ESRL

What You Should Take Away...

TEST → EVALUATE → TRAIN AND IMPLEMENT

 WPC-HMT continually works with colleagues to investigate ways to improve WPC operations

A Few Examples:

Ensemble Sensitivity Tool (SUNY Stonybrook)
SREF parallel (EMC)

AFWA High-Resolution Ensemble (AFWA)

GEFS 2nd Generation Reforecast Dataset (ESRL)

Storm Scale Ensemble of Opportunity (SPC)

Ensemble Clustering (EMC)

HMT-Ensemble (ESRL/HMT)

NAM Rime-Factor Modified Snowfall (EMC)

- For the WPC, testing in the operational setting is imperative
 - Experiments → it's not just about objective scores
- Implementation can be a big hurdle
 - Proper data formatting and dependable dataflow to meet requirements

Beneficial \rightarrow Efficient \rightarrow IT Compatible \rightarrow Sustainable